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Abstract

A new method is proposed to obtain the eigenfrequencies and mode shapes of beams containing multiple
cracks and subjected to axial force. Cracks are assumed to introduce local flexibility changes and are
modeled as rotational springs. The method uses one set of end conditions as initial parameters for
determining the mode shape functions. Satisfying the continuity and jump conditions at crack locations,
mode shape functions of the remaining parts are determined. Other set of boundary conditions yields a
second-order determinant that needs to be solved for its roots. As the static case is approached, the roots of
the characteristic equation give the buckling load of the structure. The proposed method is compared
against the results predicted by finite element analysis. Good agreement is observed between the proposed
approach and finite element results. A parametric study is conducted in order to investigate the effect of
cracks and axial force levels on the eigenfrequencies. Both simply supported and cantilever beam-columns
are considered. It is found that eigenfrequencies are strongly affected by crack locations, severities and axial
force levels. Simple modifications to account for flexible intermediate supports are presented as well. The
proposed method can efficiently be used in detecting crack locations, severities and axial forces in beam-
columns. Furthermore it can be used to predict the critical load of damaged structures based on
eigenfrequency measurements.
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1. Introduction

Deteriorating infrastructure has resulted in a surge of techniques for identification of damage in
structural elements. Use of eigenfrequency changes in damaged structural elements has been
widely investigated for their possible use in damage detection studies [1,2]. The ease of
experimentation and data processing associated with frequency-based detection schemes make
them attractive from an engineering perspective. However, consideration of all factors that can
influence vibration frequencies is required to accurately detect cracks. For structural elements that
are subjected to axial loads, such as building columns and bridge piers, the effect of axial force on
eigenfrequencies can be significant. Furthermore, determining axial loads from vibration data is a
method used for capacity evaluation of columns. These factors require axial forces to be
considered in vibration analyses. In order to solve the inverse problems (i.e. detection of crack
locations and severity) associated with these structural elements, efficient forward problem
solution techniques are required.

Vibrations of cracked structures have been widely investigated in the last three decades. Several
approaches for determining natural frequency changes due to presence of a single crack have been
studied [3–5]. For the case of multiple cracks, a number of approaches were proposed to
determine the eigenfrequencies [6,7]. The improved analytical formulation by Li [7,8] makes use of
the boundary conditions and recursive formulas to reduce the problem to finding the roots of the
second-order determinant. Arbitrary numbers of cracks and concentrated masses can be handled
easily with the method proposed by Li [7]. In these solutions, effects of axial forces were not
considered. Krawczuk and Ostachowicz [9] employed finite element analysis in order to determine
eigenfrequencies by taking into account the effect of axial force through the use of the geometric
stiffness matrix. Their study was limited to structures containing a single crack. The inverse
problem, i.e. finding the location and severity of cracks from frequency measurements, has been
investigated using the finite element method [10,11], the transfer matrix approach [12] and
perturbation solutions [13]. State of the art review studies have been presented on damage
identification procedures [1,2,14].

Other studies have been conducted on stability of cracked and uncracked structures [15–18].
Chen and Chen [15] investigated the stability of a rotating shaft with a single crack. Their study
examined the dynamic stability of the shaft under the assumptions of Timoshenko beam theory.
Li [16] used a transfer matrix approach to determine buckling loads of multi-stepped beam-
columns. Naguleswaran [17] examined the stability and vibration of an undamaged beam-column
up to three step changes. Takahashi [18] used a transfer matrix approach for vibration and
stability analysis of a non-uniform shaft with a single crack. Vibration and stability of a cracked
translating beam has been investigated by Murphy and Zhang [19]. In these studies [16,18,19]
cracks were assumed to remain open regardless of the modes and cycle of vibration. Murphy and
Zhang [19] studied the static bending moment and axial force resulting in an ‘‘open crack’’
condition for a simply supported beam. They concluded that a tensile load together with a
positive bending moment results in an open crack whereas a compressive load and a negative
bending moment results in a closed crack. For cases that signs of the axial load and bending
moment are opposite, these researchers found a linear relationship between the axial force and
bending moment for which crack remains open [19]. Such a criterion for cracks present on axially
loaded vibrating beams depends on the axial load level, amplitude of the excitation, the locations
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of the cracks and eigenmode under consideration. Furthermore, resulting problem is nonlinear
due to change in local flexibility during crack closure, and the use of time domain analysis is
necessary. Instead, current study primarily focuses on the proposed method of solution in the
frequency domain, where all cracks are assumed to remain open. This assumption is believed to
represent a limiting condition for the flexibilities introduced due to the presence of cracks.

Plane of buckling depends on the direction about which moment of inertia of the cross section
is minimum [20]. When buckling occurs in a plane parallel to the crack direction (out of plane),
part of the crack can close while part of it remains open, resulting in a nonlinear problem.
Conversely, when buckling plane is perpendicular to the crack direction (in plane), it is realistic to
assume that cracks are open in the deformed configuration [16]. This study refers to the latter case
of in-plane buckling where crack directions are assumed to be parallel to the shorter side of a
rectangular cross section. In this way, buckling plane is ensured to be perpendicular to the crack
directions for which open crack assumption is reasonable. Moreover, for cracks developed under
service loads, it is not unrealistic to expect crack directions be perpendicular to the weakest plane
of axis about which buckling can occur.

Apart from approaches for determining vibration and stability behavior of beam-columns with
the use of numerical methods [10,12] and classical solutions for cases without any cracks [20,21],
closed form solutions are required for damaged beam-columns subjected to axial force. The
objective of this study is to introduce a new method to determine natural frequencies and mode
shapes of beam-columns containing multiple cracks. The mode shape functions are expressed in
terms of initial parameters that satisfy the boundary conditions. The approach results in a second-
order determinant with the consideration of axial force. As the static case is approached, it also
gives the critical load for the structure considered. Parametric studies are conducted to investigate
the effects of axial force, crack locations and severities on the eigenfrequency changes for beam-
columns with boundary conditions that are commonly encountered in engineering practice.
2. Theoretical development

An Euler–Bernoulli beam containing multiple cracks with a constant axial force is considered
(Fig. 1). The beam has n cracks located at xi. The differential equation of free vibration for the
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Fig. 1. Beam with n cracks subjected axial force.
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uncracked beam assuming constant flexural rigidity and mass density can be written as follows
[21]:

EI
q4y

qx4
þ P

q2y

qx2
þ rA

q2y

qt2
¼ 0; (1)

where E is the modulus of elasticity, I the moment of inertia of the beam, P the axial load acting
on the beam, and rA are the mass per unit length of the beam. Solution of Eq. (1) with the use of
separation of variables is given in the following form:

yðx; tÞ ¼ Y ðxÞeiot: (2)

Substituting Eq. (2) into Eq. (1) yields the differential equation for modal displacements and it
is given in the following equation:

EI
q4Y

qx4
þ P

q2Y

qx2
� rAo2Y ¼ 0: (3)

In Eq. (3), o is the circular natural frequency of the transverse vibration for the compressed
beam. The general solution of Eq. (3) can be written as:

Y ðxÞ ¼ C1 sinhðax=LÞ þ C2 coshðax=LÞ þ C3 sinðbx=LÞ þ C4 cosðbx=LÞ (4)

here C1, C2, C3, and C4 are the constants that need to be evaluated using boundary conditions. a
and b are non-dimensional parameters which can be written as:

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

PL2

2EI

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL2

2EI

� �2

þ
rA

EI

� �
oL2
� �2

svuut
; (5)

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL2

2EI

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL2

2EI

� �2

þ
rA

EI

� �
oL2
� �2

svuut
: (6)

By setting F ¼ PL2=2EI and C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrA=EIÞ

p
oL2; a and b can be expressed as a ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Fþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þC2

pq
; and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þC2

pq
:

In order to write the general solution (Eq. (4)) as a function of boundary conditions at x ¼ 0;
Eq. (7) is adopted. This greatly simplifies the solution of the problem and helps to build a
systematic approach for the problem considered in this study

Y ðwÞ ¼ Y ð0ÞAðwÞ þ Y 0ð0ÞBðwÞ þ Y 00ð0ÞCðwÞ þ Y 000ð0ÞDðwÞ: (7)

In Eq. (7), w is the non-dimensional length parameter (x/L), Y ð0Þ is displacement at w ¼ 0; and
other initial parameters Y 0ð0Þ; Y 00ð0Þ; and Y 000ð0Þ are related to the boundary conditions such that
they give displacement units. These relations are given as Y 0ð0Þ ¼ yð0ÞL; Y 00ð0Þ ¼ Mð0ÞL2=EI ;
Y 000ð0Þ ¼ Qð0ÞL3=EI where yð0Þ; Mð0Þ; Qð0Þ are the slope, bending moment, and shear at w ¼ 0;
respectively. Functions AðwÞ; BðwÞ; CðwÞ; DðwÞ are appropriately selected linearly independent
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non-dimensional functions which satisfy the following condition:

Að0Þ A0ð0Þ A00ð0Þ A000ð0Þ

Bð0Þ B0ð0Þ B00ð0Þ B000ð0Þ

Cð0Þ C0ð0Þ C00ð0Þ C000ð0Þ

Dð0Þ D0ð0Þ D00ð0Þ D000ð0Þ

2
66664

3
77775 ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775: (8)

It should be noted that Li [8] used a similar identity (Eq. (8)) to describe the modal shape
functions of beams in the case of no axial force. In the presence of axial force, functions AðwÞ;
BðwÞ; CðwÞ; DðwÞ are given as follows:

AðwÞ ¼ HðwÞ þ 2FFðwÞ; (9)

BðwÞ ¼ GðwÞ þ 2FEðwÞ; (10)

CðwÞ ¼ F ðwÞ ¼ Z½coshðawÞ � cosðbwÞ�; (11)

DðwÞ ¼ EðwÞ ¼ Z
1

a
sinhðawÞ �

1

b
sinðbwÞ

� �
; (12)

GðwÞ ¼ Z½a sinhðawÞ þ b sinðbwÞ�; (13)

HðwÞ ¼ Z½a2 coshðawÞ þ b2 cosðbwÞ�; (14)

where Z ¼ 1
�
ða2 þ b2

Þ:
For static case (i.e. o ¼ 0) functions AðwÞ; BðwÞ; CðwÞ; DðwÞ reduce to the equations given below:

AðwÞ ¼ 1; (15)

BðwÞ ¼ w; (16)

CðwÞ ¼
1

b2
½1 � cosðbwÞ�; (17)

DðwÞ ¼
1

b2
w�

1

b
sinðbwÞ

� �
: (18)

Using the approach described by Eq. (7), the modal shape functions of the first segment (from
the left support to the first crack) of the beam with cracks can be described with the following
expression:

Y 1ðwÞ ¼ Y 1ð0ÞAðwÞ þ Y 0
1ð0ÞBðwÞ þ Y 00

1ð0ÞCðwÞ þ Y 000
1 ð0ÞDðwÞ: (19)

The boundary conditions at w ¼ 0; helps reducing Eq. (19) to a form involving only two of the
initial parameters. A list of common boundary conditions and the modal shape functions of the
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Table 1

Common boundary conditions and mode shape functions of the first segment

Support type Boundary conditions Mode shape function of first segment

(pinned) Y ð0Þ ¼ 0 Y ðwÞ ¼ Y 0ð0ÞBðwÞ þ Y 000ð0ÞDðwÞ
Y 00ð0Þ ¼ 0

(fixed) Y ð0Þ ¼ 0 Y ðwÞ ¼ Y 00ð0ÞCðwÞ þ Y 000ð0ÞDðwÞ
Y 0ð0Þ ¼ 0

(guided) Y 0ð0Þ ¼ 0 Y ðwÞ ¼ Y ð0ÞAðwÞ þ Y 00ð0ÞCðwÞ
Y 000ð0Þ ¼ 0

(free) Y 00ð0Þ ¼ 0 Y ðwÞ ¼ Y ð0ÞAðwÞ þ Y 0ð0ÞGðwÞ
Y 000ð0Þ þ 2FY 0ð0Þ ¼ 0
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first segment are given in Table 1. A model of massless rotational spring is adopted for the cracks
in order to describe the local flexibility due to the presence of cracks [5,6]. According to this
representation, continuity of displacement, moment, and shear needs to be satisfied. Furthermore,
the jump condition for the slopes at two ends of the crack needs to be satisfied due to the presence
of the rotational spring. Based on these arguments following conditions needs to hold at the first
crack location:

Y 1ðw1Þ ¼ Y 2ðw1Þ; (20)

Y 0
2ðw1Þ � Y 0

1ðw1Þ
� �

¼ C1Y 00
1ðw1Þ; (21)

Y 00
1ðw1Þ ¼ Y 00

2ðw1Þ; (22)

Y 000
1 ðw1Þ þ 2FY 0

1ðw1Þ ¼ Y 000
2 ðw1Þ þ 2FY 0

2ðw1Þ: (23)

In Eq. (21), C1 is the non-dimensional flexibility of the rotational spring representing the effect
of crack at first crack location, w1: For a one sided open crack, Ci is given in Eq. (24) [6–8,16,22] as
a function of non-dimensional crack severity ai=h; ai is the depth of the crack and h is the depth of
the section

Ciðai=hÞ ¼ 5:346ðh=LÞð1:8624ðai=hÞ2 � 3:95ðai=hÞ3 þ 16:375ðai=hÞ4

� 37:226ðai=hÞ5 þ 76:81ðai=hÞ6 � 126:9ðai=hÞ7 þ 172ðai=hÞ8

� 143:97ðai=hÞ9 � 66:56ðai=hÞ10
Þ: ð24Þ

The compliance function given Eq. (24) represents the local flexibility introduced due to the
presence of a crack. It was derived by Dimarogonas and Paipetis [23] using linear elastic fracture
mechanics. Experimental verification of this local flexibility function was presented for cantilever
beams with a single crack [22]. Crack positions, and severities (a=h ratios ranging from 0.1 to 0.8)
were taken as test variables in the experiments. Closed form expressions to determine eigenvalues
of a cantilever beam with a crack were used in their analytical model [22]. Cracks were modeled
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using rotational springs with flexibilities given by Eq. (24). Comparisons of analytical results with
experimental findings showed that estimated crack locations and severities had errors no larger
than 8% and 5%, respectively. These results provide confidence on the accuracy of Eq. (24) which
simulates local flexibility due to the presence of a crack. Therefore, further verification of the
flexibility function using other numerical analysis tools is not conducted. Instead, details and
accuracy of the proposed method are presented below.

In order to satisfy the jump condition of the slopes (Eq. (21)), and continuity of shear at crack
locations following expression needs to hold:

Y 2ðwÞ ¼ Y 1ðwÞ þ C1Y 00
1ðw1ÞBðw� w1Þ � 2FC1Y 00

1ðw1ÞDðw� w1Þ: (25)

It can be seen that when w is equal to w1; first derivative of Eq. (25) recovers the jump condition
defined by Eq. (21), and third derivative of Eq. (25) recovers the continuity condition defined by
Eq. (23). Continuity of displacement and moments are satisfied due to the special character of
functions BðwÞ; DðwÞ as given per Eq. (8). Generalizing Eq. (25) for the ith crack and making use of
Eq. (10) yields the modal shape function for (i+1)th beam segment:

Y iþ1ðwÞ ¼ Y iðwÞ þ CiY
00
i ðwiÞGðw� wiÞ: (26)

This expression can be used to compute the modal shape function of the (n+1)th segment as a
function of the modal shape function of the first segment. This relationship is given in the
following eqation:

Y nþ1ðwÞ ¼ Y 1ðwÞ þ
Xn

i¼1

CiY
00
i ðwiÞGðw� wiÞ: (27)

Y 1ðwÞ is selected from Table 1 depending on the boundary conditions prescribed at w ¼ 0: As
mentioned previously, only two unknowns are involved in this expression. Applying the boundary
conditions at the right end of the beam, two equations are obtained with two unknowns. By
setting the determinant of this system of two equations equal to zero, eigenfrequencies can be
obtained for a beam with multiple cracks located at x1, x2, y, xn subjected to an axial load, P.
Once the eigenfrequencies are determined, the mode shape functions can easily be determined by
relating the two unknowns associated with the boundary conditions at w ¼ 0 and using Eq. (27).
In order to determine the buckling load of the beam containing multiple cracks, a similar
procedure can be followed by setting o ¼ 0 (or a ¼ 0).
3. Case studies

3.1. Simply supported beam

First, simply supported beam with a single crack is considered. The boundary conditions at
w ¼ 0 yield the mode shape functions of the first segment in the following form:

Y 1ðwÞ ¼ Y 0
1ð0ÞBðwÞ þ Y 000

1 ð0ÞDðwÞ: (28)

Using Eq. (27), the eigenfunction of the second segment is:

Y 2ðwÞ ¼ Y 1ðwÞ þ C1Y 00
1ðw1ÞGðw� w1Þ: (29)
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Substituting Eq. (28) into Eq. (29) and applying the boundary conditions at w ¼ 1; (Y 2ð1Þ ¼ 0;
Y 00

2ð1Þ ¼ 0) following two equations shown in a matrix representation are obtained:

Bð1Þ þ C1Gð1 � w1ÞB
00ðw1Þ Dð1Þ þ C1Gð1 � w1ÞD

00ðw1Þ

B00ð1Þ þ C1G00ð1 � w1ÞB
00ðw1Þ D00ð1Þ þ C1Gð1 � w1ÞD

00ðw1Þ

" #
¼

Y 0
1ð0Þ

Y 000
1 ð0Þ

" #
: (30)

Setting the determinant of the 2	 2 matrix given on the left-hand side of Eq. (30), and solving
for o; results in the eigenfrequencies of the cracked beam. For the static case ðo ¼ 0Þ; the
characteristic equation can be obtained from the determinant of the same matrix and reduces to
the following form:

sinðbÞ � C1b sinðbw1Þ sinðbw2Þ ¼ 0: (31)

The analysis presented above is performed in a non-dimensional manner. The parameters that
needs to be selected are w1; a1=h; h=L and P=Pcr in order to generate non-dimensional plots for
eigenfrequencies. Pcr is the Euler buckling load for the simply supported undamaged beam ðPcr ¼

p2EI=L2Þ: In order to determine the non-dimensional buckling load ðP=PcrÞ; selection of w1; a1=h;
h=L are sufficient.

Fig. 2 presents the results of analyses for the buckling load of a simply supported beam with a
single crack. Non-dimensional crack location w1; are plotted against the non-dimensional buckling
load P=Pcr for crack severities ða1=hÞ ranging from 0.05 to 0.5. This range of crack severities is
believed to represent the depth of cracks that occur under service loads. An h=L ratio of 0.1 is
selected for all the analyses. Due to symmetry of the beam and the boundary conditions, crack
location is varied from the support to the center of the beam. It can be observed that buckling
load significantly changes due to the presence of cracks. For a crack with an a1=h ratio of 0.5
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Fig. 2. Buckling loads of the simply supported beam with a single crack located at ðx1=LÞ for various crack severities

(a1=h values given next to curves); solid lines: analytical solution, dots: finite element analyses.
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Fig. 3. First and second eigenfrequencies of the simply supported beam with a single crack located at ðx1=LÞ for

different axial loads (P/Pcr values given next to curves), and crack severities, (a) a1=h ¼ 0:1; (b) a2=h ¼ 0:3; and (c)

a1=h ¼ 0:5; solid lines: analytical solution, dots: finite element analyses.
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located at the center of the beam, buckling load decreases about 30%. As expected, deeper cracks
closer to the center of the beam result in higher reductions of buckling loads.

Fig. 3 presents the results of eigenfrequencies of the cracked beam divided by the
eigenfrequency of the undamaged beam (o10 ¼ ðp=LÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
; o20 ¼ ð2p=LÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
). An

aspect ratio (h/L) of 0.1 is selected for the analyses and crack location and axial force levels are
varied. Three crack severities, and seven axial force levels are used in the analyses. It can be
observed that as the crack location approaches to the center of the beam, the reduction in the
natural frequency of the beam due to the presence of the crack increases. For the second mode
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Table 2

Comparisons of results with finite element analyses for the simply supported beam with two cracks

Parameters Results from proposed approach Finite element analyses results

x1/

L

x2/

L

a1/h a2/h Axial load

(P/Pcr
a)

Buckling

load (P/

Pcr
a)

o1=o10
b o2=o20

c Buckling

load (P/

Pcr
a)

o1=o10
b o2=o20

c

0.1 0.4 0.3 0.5 0.1 0.7129 0.7917 0.9223 0.7129 0.7916 0.9221

0.1 0.4 0.3 0.5 0.2 0.7244 0.9085 0.7243 0.9083

0.1 0.4 0.3 0.5 0.3 0.6501 0.8944 0.6500 0.8943

0.1 0.4 0.2 0.4 0.1 0.7850 0.8331 0.9420 0.7851 0.8330 0.9418

0.1 0.4 0.2 0.4 0.2 0.7700 0.9285 0.7699 0.9284

0.1 0.4 0.2 0.4 0.3 0.7012 0.9148 0.7011 0.9147

0.2 0.3 0.3 0.5 0.1 0.7342 0.8105 0.8371 0.7342 0.8104 0.8367

0.2 0.3 0.3 0.5 0.2 0.7442 0.8217 0.7441 0.8214

0.2 0.3 0.3 0.5 0.3 0.6713 0.8060 0.6713 0.8057

0.2 0.3 0.2 0.4 0.1 0.8142 0.8528 0.8773 0.8142 0.8528 0.8771

0.2 0.3 0.2 0.4 0.2 0.7910 0.8627 0.7909 0.8625

0.2 0.3 0.2 0.4 0.3 0.7239 0.8479 0.7238 0.8477

aPcrp2EI=L2:
bo10 ¼ ðp=LÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
:

co20 ¼ ð2p=LÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
:
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frequency, L/4 is the location that results in the maximum decrease compared to that of the
undamaged beam with axial force. When the axial force is compressive, reductions in the
eigenfrequencies are observed whereas increases in eigenfrequencies are observed when the axial
force is tensile. It can be observed that even small axial loads, which are actually realistic for
service conditions of some structural elements, can result in shifts up to 15% in the first mode
eigenfrequencies. This result is important from the point of damage detection using
eigenfrequencies. Furthermore, as the crack severity increases (higher a1=h ratios) reduction in
eigenfrequency changes becomes more pronounced.

The results obtained through the use of the proposed method are compared to the results
obtained from finite element analyses conducted using ANSYS [24]. The beam is discretized into
50 elements for accurate representation of crack locations, and cracks are modeled using
rotational springs whose flexibilities are determined through the use of Eq. (24). In this way,
possible modeling errors due to crack representation can be isolated, while verifying the accuracy
of the proposed method. The results of finite element analyses are shown in Figs. 2 and 3a. It can
be observed that a good agreement is observed between the two solutions, the proposed approach
being more efficient once the system of equations is set.

The effect of having the second crack on the buckling loads and eigenfrequency changes are
studied next. The problem statement and the second-order determinant to be solved for the simply
supported beam with two cracks are given in Appendix A. Cases analyzed using the proposed
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Fig. 4. First and second eigenfrequencies of the simply supported beam with two cracks for different axial loads (P/Pcr

values given next to curves) and second crack locations ðx2=LÞ; first crack location ðx1=L ¼ 0:25Þ; crack severities

ða1=h ¼ a2=h ¼ 0:3Þ:
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approach and finite element analyses are given in Table 2. A good agreement between the two
solutions is observed both for the buckling loads and eigenfrequencies. It can be observed that
eigenfrequency changes due to presence of two cracks are dependent on crack location severity
and the applied axial load level. In order to further clarify the effect of the second crack on the
eigenfrequencies another set of parametric studies are performed. First crack location ðw1Þ is fixed
at 0.25, whereas first and second crack severities (a1=h and a2=h values) are taken as 0.3. The
location of the second crack and axial load levels are varied similar to those presented previously.
Results of these analyses are given in Fig. 4. It can be observed that a maximum reduction of
about 7% is observed in the first eigenfrequency compared to the case with single crack. In
addition, presence of the axial force equal to 20% of the buckling load can change the
eigenfrequencies of the damaged beam up to 10%. Another interesting observation is due to the
symmetry of the structure. The presence of the second crack at one of the two symmetric locations
results in similar changes in eigenfrequencies, resulting in the multiplicity of the solution in the
damage identification process.
3.2. Cantilever beam

The analysis of a cantilever beam is performed similar to that presented for the simply
supported beam. The approach with the proposed method is presented here for a single crack
case, whereas details of the solution for three cracks are presented in Appendix A. The boundary
conditions at the free end yield the mode shape functions of the first segment in the following
form:

Y 1ðwÞ ¼ Y 1ð0ÞAðwÞ þ Y 0
1ð0ÞGðwÞ: (32)

Using Eq. (27), the eigenfunction of the second segment is:

Y 2ðwÞ ¼ Y 1ðwÞ þ C1Y 00
1ðw1ÞGðw� w1Þ: (33)
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Substituting Eq. (28) into Eq. (29) and applying the boundary conditions at w ¼ 1; (Y 2ð1Þ ¼ 0;
Y 0

2ð1Þ ¼ 0) following set of equations are obtained:

Að1Þ þ C1Gð1 � w1ÞA
00ðw1Þ Gð1Þ þ C1Gð1 � w1ÞG

00ðw1Þ

A0ð1Þ þ C1G0ð1 � w1ÞA
00ðw1Þ G0ð1Þ þ C1G0ð1 � w1ÞG

00ðw1Þ

" #
Y 1ð0Þ

Y 0
1ð0Þ

" #
¼ 0: (34)

Setting the determinant of the matrix given on the left-hand side and solving for o; gives the
eigenfrequencies of the damaged beam for a given level of axial load.

The effect of having a crack ða1=h ¼ 0:3Þ in a cantilever beam with an aspect ratio of 0.1 is
presented in Fig. 5. Non-dimensional frequency parameters are used in these plots where o10 and
o20 are the first two eigenfrequencies of the undamaged cantilever beam
(o10 ¼ ð1:875=LÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
; o20 ¼ ð4:694=LÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
from Ref. [21]). It can be observed that

as the crack location approaches to the fixed support, a reduction of about 15% in the first
eigenfrequency occurs. An axial load level equal to 20% of the critical buckling load can shift the
eigenfrequencies by about 10% compared to the beam with no axial force. It can also be observed
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that for a crack located within 0.4L from the free end; changes in the first eigenfrequencies are
minimal compared to that of the undamaged beam with axial force.

The effect of having a second crack is studied by taking the first crack location
at 0.65L ðw1 ¼ 0:65Þ with an a1=h ratio of 0.3. Second crack severity is assumed to be
similar to that of the first crack and its location is varied along the beam length. First and
second mode eigenfrequency changes are shown in Fig. 6. The effect of having the second crack
on the first eigenfrequency is negligible when the crack is located within 0.4L from the free end.
However, second mode frequencies change more drastically with the variation of the crack
location. It can be observed that there could be multiple second crack locations that would result
in the same eigenfrequency changes for the second mode. It can also be stated that axial force
tends to affect the first mode eigenfrequencies more than its effect on second mode
eigenfrequencies.

Finally, the effect of having a third crack with the crack severity equal to the previous
cases is studied. Results presented in Fig. 7 show that similar trends are observed to the
case where the effect of second crack is examined. These findings support the fact that axial
force magnitudes together with crack locations and severities significantly affect the
eigenfrequency changes. In addition, analyses results for three crack cases are compared to the
results of the finite element analyses (Table 3). A good agreement between the results of the
proposed approach and finite element analyses results are observed. It can also be stated that as
the set of three cracks approach to the fixed end significant reductions in the buckling loads can
occur (Table 3).

The effect of having intermediate elastic flexible supports on vibration and stability
characteristics of beam-columns can also be considered within the context of the proposed
approach (Fig. 8). For this purpose, appropriate continuity conditions due to the presence of
elastic supports are written and the mode shape function of (i+1)th segment are expressed in
terms of the spring constants and mode shape function of ith segment. Then the mode shape
functions of the last segment can be determined. Applying appropriate boundary conditions yields
a system of equations. Solving for the roots of the second-order determinant gives the
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Table 3

Comparisons of results with finite element analyses for the cantilever beam with three cracks

Parameters Results from proposed approach Finite element analyses results

x1/L x2/L X3/L a1/h a2/h A3/h Axial load

(P/Pcr
a)

Buckling load

(P/Pcr
a)

o1=o10
b o2=o20

c Buckling load

(P/Pcr
a)

o1=o10
b o2=o20

c

0.1 0.2 0.3 0.3 0.3 0.3 �0.2 0.9515 1.0862 0.9658 0.9515 1.0860 0.9650

0.1 0.2 0.3 0.3 0.3 0.3 0 0.9967 0.9465 0.9965 0.9457

0.1 0.2 0.3 0.3 0.3 0.3 0.2 0.8947 0.9266 0.8945 0.9259

0.1 0.2 0.3 0.2 0.3 0.5 �0.2 0.9053 1.0838 0.9132 0.9053 1.0836 0.9123

0.1 0.2 0.3 0.2 0.3 0.5 0 0.9922 0.8911 0.9920 0.8903

0.1 0.2 0.3 0.2 0.3 0.5 0.2 0.8867 0.8684 0.8865 0.8675

0.2 0.4 0.6 0.3 0.3 0.3 �0.2 0.8571 1.0579 0.9118 0.8571 1.0578 0.9111

0.2 0.4 0.6 0.3 0.3 0.3 0 0.9620 0.8931 0.9618 0.8924

0.2 0.4 0.6 0.3 0.3 0.3 0.2 0.8511 0.8739 0.8510 0.8732

0.2 0.4 0.6 0.2 0.3 0.5 �0.2 0.7558 1.0229 0.8743 0.7558 1.0227 0.8737

0.2 0.4 0.6 0.2 0.3 0.5 0 0.9189 0.8560 0.9187 0.8553

0.2 0.4 0.6 0.2 0.3 0.5 0.2 0.7966 0.8373 0.7964 0.8366

0.3 0.6 0.9 0.3 0.3 0.3 �0.2 0.7845 0.9776 0.9068 0.7844 0.9775 0.9061

0.3 0.6 0.9 0.3 0.3 0.3 0 0.8803 0.8882 0.8801 0.8876

0.3 0.6 0.9 0.3 0.3 0.3 0.2 0.7669 0.8692 0.7667 0.8686

0.3 0.6 0.9 0.2 0.3 0.5 �0.2 0.6651 0.8814 0.8909 0.6651 0.8862 0.8950

0.3 0.6 0.9 0.2 0.3 0.5 0 0.7787 0.8725 0.7775 0.8767

0.3 0.6 0.9 0.2 0.3 0.5 0.2 0.6564 0.8537 0.6573 0.8581

aPcrp2EI=4L2:
bo10 ¼ ð1:8752=L2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
:

co20 ¼ ð4:6942=L2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
:
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eigenfrequencies and buckling loads (for the static case) of the beam with multiple cracks and
intermediate supports that is subjected to constant axial force. This approach is explained in detail
in Appendix B.
4. Conclusions

A new efficient method is proposed to determine eigenfrequency changes of axially loaded
beams with multiple cracks. Modal shape functions are written as a function of initial boundary
parameters, crack locations and severities. The method is efficient for handling cases with
arbitrary number of cracks as the characteristic equation reduces to a second-order determinant.
As the static case is approached, buckling load of the beam-column can also be computed.
Comparisons of the analytical results with finite element analyses for simply supported and
cantilever beams containing up to three cracks have shown good agreement. The method is also
extended to include the effect of flexible intermediate supports, which are important for stability
and vibration analysis of beam-columns.

The parametric studies conducted on simply supported and cantilever beams showed that
eigenfrequency changes due to axial loads are important. Axial loads of about 30% of the critical
buckling loads are found to affect first mode eigenfrequencies up to 15%. This effect is observed
to be less significant for the second mode eigenfrequenceies among the analyzed cases. The
presence of open cracks is found to significantly decrease buckling loads depending on the
locations and severity of them. In addition, it is shown that crack locations and severities can
significantly affect the changes in eigenfrequencies. For the simply supported case, when the first
crack location was fixed, different locations of the second crack can result in similar changes in
eigenfrequencies leading to the multiplicity of the solution during crack detection process.

The use of the proposed approach is believed to provide an efficient method that can be used in
damage identification studies by considering axial loads. It can also serve as a verification method
for numerical methods developed for damage detection purposes. Further research is required to
experimentally examine the effects of axial force on the changes of eigenfrequencies and buckling
loads of cracked beams. In this way, it is possible to show the validity of rotational spring
idealization for cracks and open crack assumption adopted in the analyses when axial forces are
present.
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Appendix A

A.1. Simply supported beam with two cracks

The mode shape functions of the three segments are found as follows:

Y 1ðwÞ ¼ Y 0
1ð0ÞBðwÞ þ Y 000

1 ð0ÞDðwÞ; (A.1)

Y 2ðwÞ ¼ Y 1ðwÞ þ C1Y 00
1ðw1ÞGðw� w1Þ; (A.2)

Y 3ðwÞ ¼ Y 2ðwÞ þ C2Y 00
2ðw2ÞGðw� w2Þ: (A.3)

Substituting Eqs. (A.1) and (A.2) into Eq. (A.3) and applying the boundary conditions at w ¼ 1
gives the following system of equations:

Kð1Þ Lð1Þ

K 00ð1Þ L00ð1Þ

" #
Y 0

1ð0Þ

Y 000
1 ð0Þ

" #
¼ 0: (A.4)

In which

KðwÞ ¼ BðwÞ þ C1Gðw� w1ÞB
00ðw1Þ þ C2Gðw� w2Þ B00ðw2Þ þ C1G00ðw2 � w1ÞB

00ðw1Þ
� �

; (A.5)

LðwÞ ¼ DðwÞ þ C1Gðw� w1ÞD
00ðw1Þ þ C2Gðw� w2Þ D00ðw2Þ þ C1G00ðw2 � w1ÞD

00ðw1Þ
� �

: (A.6)

Setting the determinant of the 2	 2 matrix given on the left-hand side of Eq. (A.4), and solving
for o; results in the eigenfrequencies of the cracked beam. The relationship between Y 0

1ð0Þ and
Y 000

1 ð0Þ can be obtained from the following equation:

Y 000
1 ð0Þ ¼ �

Kð1Þ

Lð1Þ
Y 0

1ð0Þ: (A.7)

Substituting Eq. (A.7) into Eqs. (A.1)–(A.3), mode shape functions of the cracked beam
segments can be computed. Appropriate normalizations can be applied to these functions if
desired [21].

A.2. Cantilever beam with three cracks

Mode shape functions of segments are determined as follows:

Y 1ðwÞ ¼ Y 1ð0ÞAðwÞ þ Y 0
1ð0ÞGðwÞ; (A.8)

Y 2ðwÞ ¼ Y 1ðwÞ þ C1Y 00
1ðw1ÞGðw� w1Þ; (A.9)

Y 3ðwÞ ¼ Y 2ðwÞ þ C2Y 00
2ðw2ÞGðw� w2Þ; (A.10)

Y 4ðwÞ ¼ Y 3ðwÞ þ C3Y 00
3ðw3ÞGðw� w3Þ: (A.11)

Substituting Eqs. (A.8)–(A.10) into Eq. (A.11), following set of equations is obtained:

Mð1Þ Nð1Þ

M 0ð1Þ N 0ð1Þ

" #
Y 1ð0Þ

Y 0
1ð0Þ

" #
¼ 0; (A.12)
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where

MðwÞ ¼ KðwÞ þ C3Gðw� w3ÞK
00ðw3Þ; (A.13)

NðwÞ ¼ LðwÞ þ C3Gðw� w3ÞL
00ðw3Þ; (A.14)

KðwÞ ¼ IðwÞ þ C2Gðw� w2ÞI
00ðw2Þ; (A.15)

LðwÞ ¼ JðwÞ þ C2Gðw� w2ÞJ
00ðw2Þ; (A.16)

IðwÞ ¼ AðwÞ þ C1Gðw� w1ÞA
00ðw1Þ; (A.17)

JðwÞ ¼ GðwÞ þ C1Gðw� w1ÞG
00ðw1Þ: (A.18)

Setting the determinant of the 2	 2 matrix given on the left-hand side of Eq. (A.12), and
solving for o; results in the eigenfrequencies of the cracked beam. The relationship between Y 1ð0Þ
and Y 0

1ð0Þ can be obtained from the following equation:

Y 0
1ð0Þ ¼ �

Mð1Þ

Nð1Þ
Y 1ð0Þ: (A.19)

The mode shape function of the segments are given below

Y 1ðwÞ ¼ Y 1ð0Þ AðwÞ �
Mð1Þ

Nð1Þ
GðwÞ

� �
; (A.20)

Y 2ðwÞ ¼ Y 1ð0Þ IðwÞ �
Mð1Þ

Nð1Þ
JðwÞ

� �
; (A.21)

Y 3ðwÞ ¼ Y 1ð0Þ KðwÞ �
Mð1Þ

Nð1Þ
LðwÞ

� �
; (A.22)

Y 4ðwÞ ¼ Y 1ð0Þ MðwÞ �
Mð1Þ

Nð1Þ
NðwÞ

� �
: (A.23)

Constant, Y 1ð0Þ is arbitrary and can be determined according to an appropriate normalization
[21].
Appendix B

B.1. Intermediate supports

Consider two segments of the beam separated by supports provided by springs (Fig. 8). At the
support location, following continuity conditions should be satisfied:

Y iðwsÞ ¼ Y iþ1ðwsÞ; (B.1)

Y 0
iðwsÞ ¼ Y 0

iþ1ðwsÞ; (B.2)
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Y 00
iþ1ðwsÞ � Y 00

i ðwsÞ ¼ krotY
0
iðwsÞ; (B.3)

Y 000
i ðwsÞ � Y 000

iþ1ðwsÞ ¼ ktrY iðwsÞ; (B.4)

where ws is the non-dimensional support location, krot is the non-dimensional rotational spring
constant (krot ¼ K rotL=EI and K rot is the rotational spring stiffness) and ktr is the non-
dimensional transverse spring constant (ktr ¼ K trL

3=EI and K tr is the rotational spring stiffness).
Eq. (B.5), which expresses the modal shape function of segment (i+1) in terms of modal shape
functions of ith segment satisfies these continuity conditions.

Y iþ1ðwÞ ¼ Y iðwÞ þ krotY
0
iðwsÞCðw� wsÞ � ktrC1Y 1ðwsÞDðw� wsÞ: (B.5)

Using this equation the modal shape function of a beam containing n cracks and ns intermediate
supports can be computed using the following expression:

Y nþ1ðwÞ ¼ Y 1ðwÞ þ
Xn

i¼1

CiY
00
i ðw1ÞGðw� wiÞ þ

Xns

s¼1

krot;sY
0
sðwsÞCðw� wsÞ

�
Xns

s¼1

ktr;sY sðwsÞGðw� wsÞ: ðB:6Þ

Once the mode shape function of the last segment is computed the rest of the solution proceeds
similarly as explained in the previous sections. Applying the appropriate boundary conditions at
both ends and setting the determinant of the system of equation to zero (similar to Eq. (30)) yields
the characteristic equation for the beam with multiple cracks and flexible intermediate supports.
Solving for the roots of this equation, the eigenfrequencies of the beam with multiple cracks and
intermediate supports subjected to an axial force can be computed.
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